# **DIGITISING INDUSTRY**

# - INDUSTRIE 4.0 IN GERMANY -

INESC TEC Forum "Factory of the Future: paths for the 21st century industry"

Dr. Günter Hörcher

20 October 2016

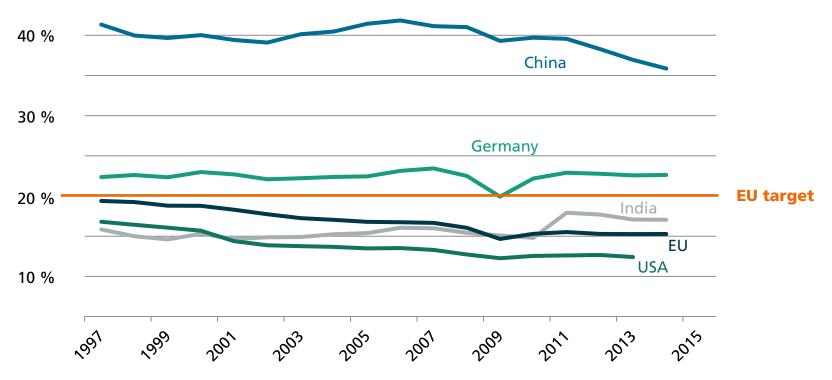








# **Digital Transformation**


- Assessment: international position of Germ



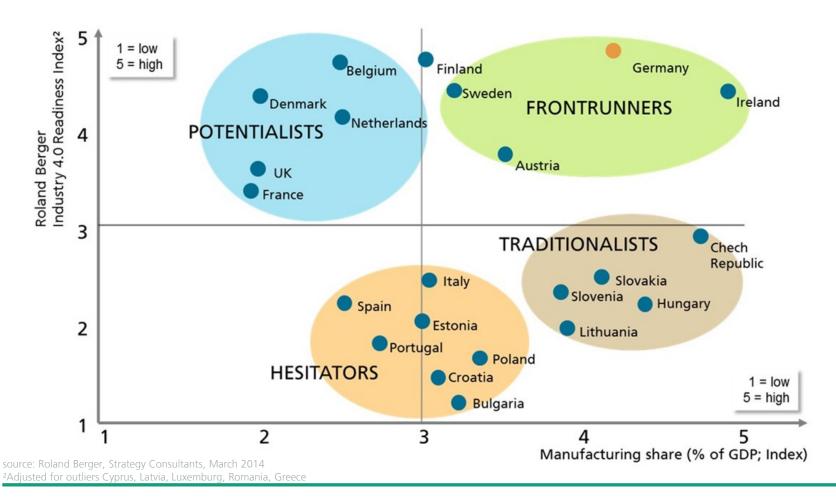
# Re-Industrialisation in Europa still pending

## **Germany supports its industrial core**

Share of the manufacturing industry within the entire gross value added [%]



<sup>\*</sup>Sofern nicht anders ausgewiesen, werden die Begriffe Industrie und Verarbeitendes Gewerbe synonym verwendet.


OECD 2016, BMWi 2014





# **Assessment of the Industry 4.0 Readiness**

# Germany as frontrunner has the best position in Europe



# Potential Economic Benefits by Industrie 4.0

## Possible increase in Gross Value Added from 15% to 30% by 2025\*

- Bitkom/IAO expects additional annual growth of 17% by 2025
- John Chambers, CEO Cisco: "... 2% of additional annual growth for the Germany economy..."\*\*
- German businesses are planning to invest €40 billion over the next 5 years\*\*\*

| Wirtschaftsbereiche                        | Bruttowertschöpfung<br>[Mrd. €] |        | Potenzial durch<br>Industrie 4.0 | Jährliche<br>Steigerung | Steigerung<br>[Mrd.€] |
|--------------------------------------------|---------------------------------|--------|----------------------------------|-------------------------|-----------------------|
|                                            | 2013                            | 2025*  | 2013-25                          | 2013-25                 | 2013-25               |
| Chemische Industrie                        | 40,08                           | 52,10  | +30%                             | 2,21%                   | 12,02                 |
| Kraftwagen- und<br>Kraftwagenteile         | 74,00                           | 88,80  | +20%                             | 1,53%                   | 14,80                 |
| Maschinen- und<br>Anlagenbau               | 76,79                           | 99,83  | +30%                             | 2,21%                   | 23,04                 |
| Elektrische Ausrüstung                     | 40,27                           | 52,35  | +30%                             | 2,21%                   | 12,08                 |
| Land- und Forstwirtschaft                  | 18,55                           | 21,33  | +15%                             | 1,17%                   | 2,78                  |
| Informations- und<br>Kommunikationstechnik | 93,65                           | 107,70 | +15%                             | 1,17%                   | 14,05                 |

| Potenzial der 6<br>ausgewählten Branchen                                               | 343,34   | 422,11     | +23%     | 1,74%   | 78,77    |
|----------------------------------------------------------------------------------------|----------|------------|----------|---------|----------|
| Beispielhafte<br>Hochrechnung für die<br>Gesamtbruttowert-<br>schöpfung in Deutschland | 2.326,61 | 2.593,06** | +11,5%** | 1,27%** | 267,45** |

<sup>\*</sup> Bei den Hochrechnungen für 2025 wurde kein Wirtschaftswachstum berücksichtigt. Es handelt sich um eine reine Relativbetrachtung mit und ohne die Industrie 4.0-Potenziale für die sechs ausgewählten Branchen.

sources: \* Bitkom/IAO 2014, \*\* Sueddeutsche.de, \*\*\* PwC Studie 2014, wiwo.de





<sup>\*\*</sup> Gesamtsumme enthält die Industrie 4.o-Potenziale für die sechs ausgewählten Branchen sowie die Hochrechnung der restlichen Branchen unter der Annahme, dass für diese ein Potenzial in Höhe von 50% des für die ausgewählten Branchen gilt.



### **German Platform Industrie 4.0**

# Securing and upgrading the international leading position of Germany in the manufacturing industry

- nationwide dialogue for the development of a harmonised understanding of Industrie 4.0
  - more than 55 companies
  - nine political organisations
  - six associations
  - one union
  - six representatives from science
- areas of activity
  - work 4.0
  - new security concepts for Industrie 4.0
  - common language for Industrie 4.0 technologies
  - legal framework for Industrie 4.0
  - Interdisciplinary collaboration as the basis for complex Industrie 4.0 technologies









### The Structure of the Platform Industrie 4.0

### Chair Ministers Gabriel, Wanka

Representatives of commerce, trade unions, science

### Technical/practical expertise decision-making

## Steering body (companies)

- Chaired by business representatives, participation of Economic Affairs and Research Ministries
- Chairs of working groups, other guests/ promoters

Industrial strategy development, technical coordination, decision-making and implementation

#### Working groups

- Reference architecture, standardisation
- · Research and innovation
- Security of networked systems
- Legal framework
- Labour, training
- Others as required

Working units with technical/practical expertise; participating ministries: Economic Affairs, Research, Interior, Justice, Labour Policy guidance, society, multipliers

#### Strategy group (Government, business, unions, science)

- Chaired by StS Machnig, StS Schütte
- Representatives of steering body
- Representatives of Federal Chancellery, Interior Ministry
- Representatives of the Länder
- Representatives of associations (VDMA, ZVEI, BITKOM, BDI, VDA, BDEW)
- Representatives of trade union (IG Metall)
- Representatives of science (Fraunhofer)

Agenda setting, political steering, multipliers

#### Activities on the market

#### Industrial consortia and initiatives

Implementation on the market: test beds, examples of applications

## International standardisation

Consortia, standardisation bodies, DKE and others

**Board of Academic Advisers** 

### Secretariat as service provider

Network coordination, organisation, project management, internal and external communication

INDUSTRIE 4.0


source: plattform-i40.de





# **Research Funding in Comparison**

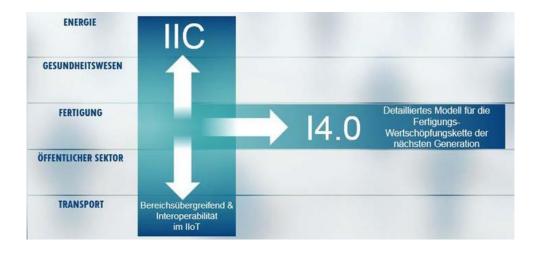
### The race for access to customers has started







- Advanced manufacturing partnership (AMP): 50+ mio Dollar
- Cyber security R&D and standards: 45+ mio Dollar
- Cyber-physical systems: 40+ mio Dollar
- National network for production innovation (NNMI): 1 billion dollar
- Public-private partnerships, e.g. industrial internet consortium
- By 2015 1,2 trillion euro will be provided to reach the global technology leadership
- July 2014 founding of "China Internet and Industry Convergence Innovation Alliance"
- Target: promote digitalization of distribution and usage of ICT in production
- Funding of several initiatives for implementing the internet of things into production
- More than 9 billion euro are available






# German Platform Industrie 4.0 and US Industrial Internet Consortium Cooperate

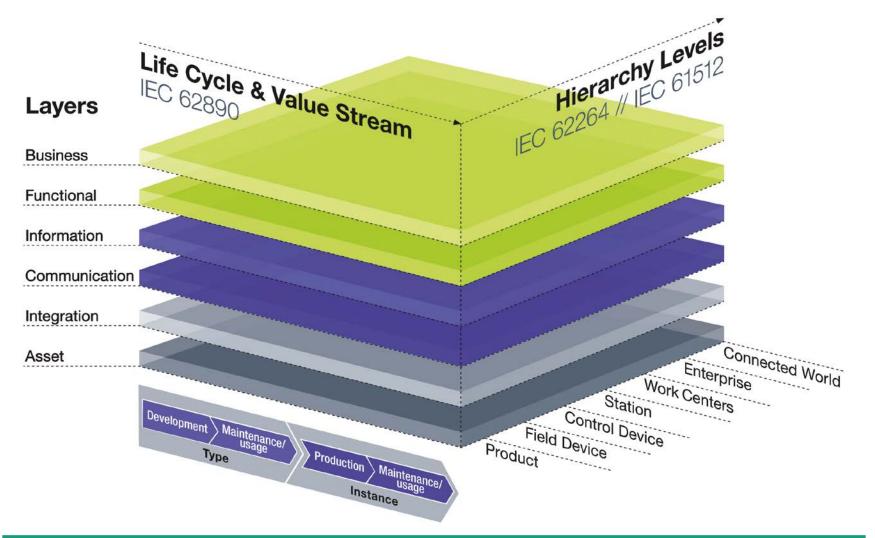
### Joint road map ...

- for the achievement of an interoperability of the architecture models RAMI (reference architecture model for Industrie 4.0) and IIRA (Industrial Internet reference architecture)
- for joint initiatives in standardization and joint test environments





# The German Standardisation Roadmap Industrie 4.0


- was published in first edition in November 2013, second edition in October 2015, development of third edition starts now
- describes the standardisation needs and the current situation
- lists the available standards and specifications already available for Industrie 4.0
- identifies and describes fields of activity
- gives recommendations
  - for the standardisation of Industrie 4.0 technologies
  - for the standardisation strategy (challenge »system of systems«)
- is a means of communication between the actors from automation technologies, ICT technologies and manufacturing technologies
- is a living document which is updated regularly







# »Reference architecture model Industrie 4.0« (RAMI 4.0)









# National Contact- and Coordination Center of the German Federal Ministry of Education and Research

**Industrie 4.0 for SME** 

### Goal

Accelerate and simplify the transfer of Industrie 4.0 technologies among application-oriented research institutes and SME to strengthen their competitiveness.

### **Focus**

Component-, machine- and plant manufacturers

### **Support**

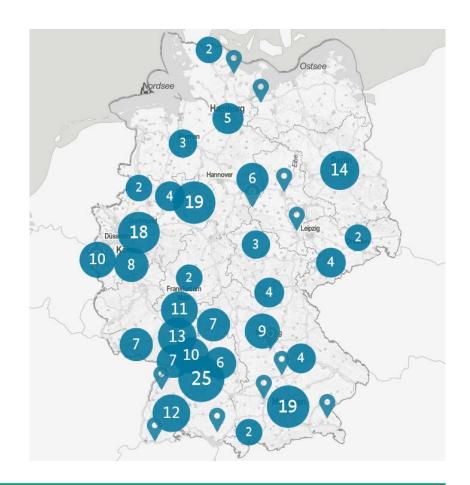
Support of pilot project s for proving Industrie 4.0 products and components in Industrie 4.0 test beds

Focus: Industrie 4.0, Internet of Things (IoT), cyber-physical systems (CPS)





# Mittelstand 4.0 **Digital Production and Work Processes**


- supported by the Federal Ministry for Economic Affairs and Energy
- helps SME and crafts enterprises with digitisation, networking and the practical use of Industrie 4.0
- competitiveness of enterprises should be strengthened and new business areas in the context of digitalization and Industry 4.0 should be developed
- nationwide programs are accessible:
  - four Mittelstand 4.0 agencies Mittelstand 4.0 agency "Cloud" (Stuttgart), "Processes" (Dortmund), "communication" (Berlin) and "trade" (Cologne)
  - ten Mittelstand 4.0 competence centres Darmstadt, Kaiserslautern, Hannover, Berlin, Dortmund, Augsburg, Chemnitz, Hamburg, Ilmenau, Stuttgart
  - one competence centre "Digitales Handwerk" (digital craft)



# **Application examples for Industrie 4.0**

## Industrie 4.0 is already in practice

- 251 application examples in Germany are already registered on Platform Industrie 4.0.
- 75 of those are in Baden-Württemberg
- Application examples in the region of Stuttgart:
  - Arena 2036: Research campus for the next generation of automobiles, University of Stuttgart
  - Festo Lernfabrik: Flexible assembly lines, Ostfildern
  - **SEW Eurodrive Smart Factory**: Concepts for tasks in logistics, assembly and production, Bruchsal



source: plattform-i40.de




### Test beds

### As entry assistance for SME

There are 33 test and competence centers in Germany.

Six of those are in Baden-Wuerttemberg.

- Application Center Industrie 4.0 at Fraunhofer IPA, Stuttgart
- Digital Engineering Lab at Fraunhofer IAO, Stuttgart
- Smart Data Innovation Lab at Karlsruhe Institute of Technology, Karlsruhe
- FZI Living Lab smartAutomation/ Service Robotics, Fellbach
- Demo-Center Virtual Engineering, Research Center for Information Technology at Karlsruhe Institute of Technology, Karlsruhe



source: plattform-i40.de, bmbf.de





## Robots will be mobile, flexible and safe

Example: SEW Eurodrive – freely navigating DTS (carries the robot for bin picking)





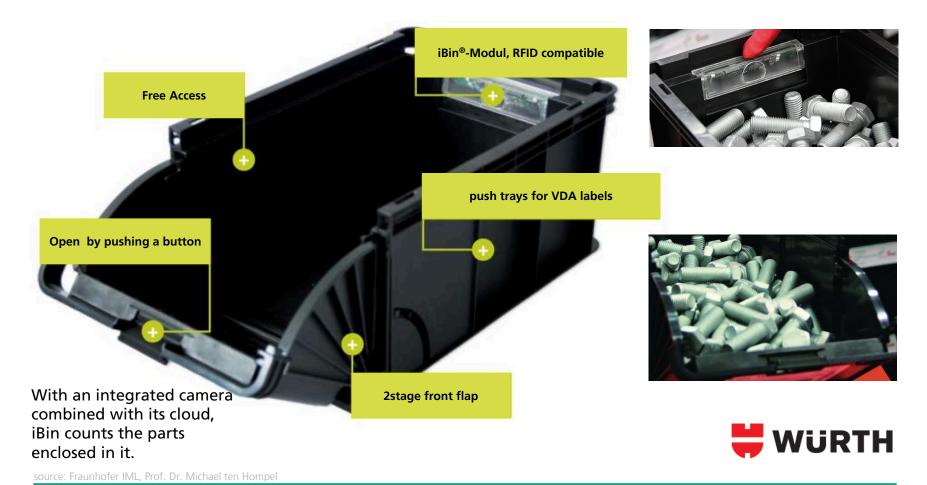




# All Objects in a Factory will be Mobile as Far as Possible

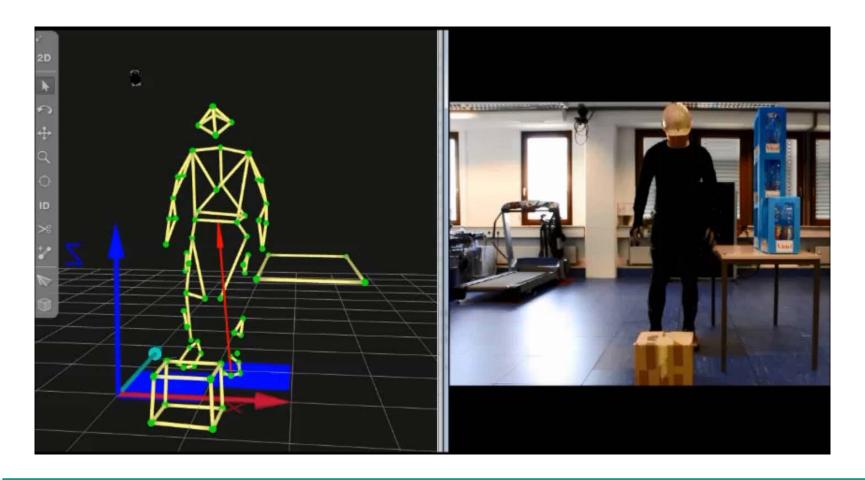
Example: Audi R8 – freely navigating AGV (navigation as a service)




source: audi-mediaservices.com






# All Objects in a Factory will be Smart

## iBin – Intelligent bins order their filling autonomously



# All Entities of a Factory have a Digital Shadow

**Example: Motion Capturing for feed-back of real processes into planning models** 





# **Business Ecosystems**

## "Farmnet 365" – an agricultural machinery initiative



Online Tracking

Real time access to farm information

any time from anywhere

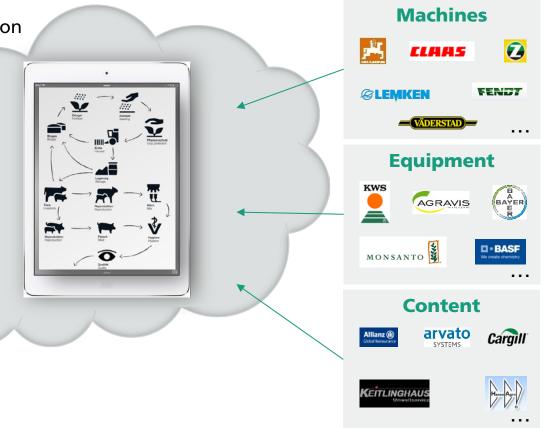
**■** Traceability

Digital, automated and complete documentation

Transparency Integration of

all farm processes

**■** Efficiency


Decision support and knowledge transfer

Quality

Tracking, documentation and early warnings

Analytics

Prediction, Big Data processing



source: farmnet



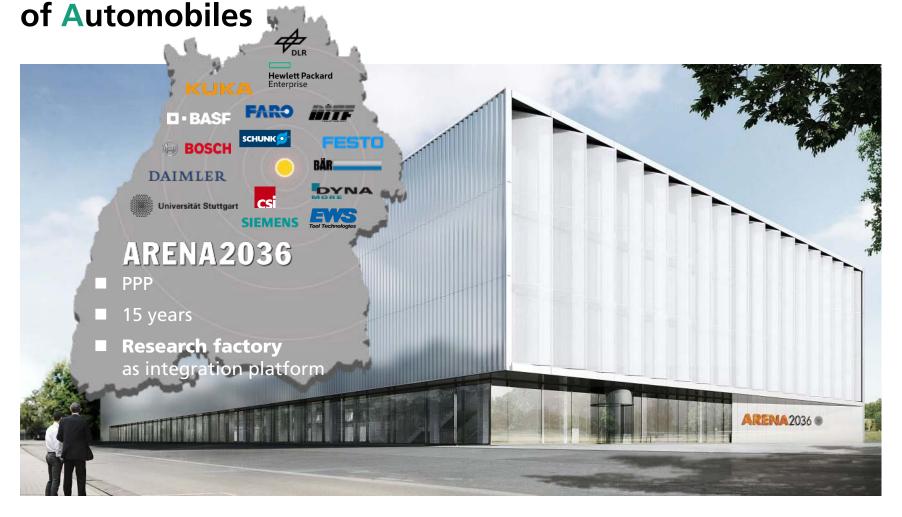




# **Baden-Württemberg Uses the Chances**

### Allianz Industrie 4.0

- Network initiated and funded by the state of Baden-Württemberg
- Aim: pool resources and know-how from production, information and communication technology in order to assist companies in their digital transformation process
- Topics
  - Cyber-physical systems
  - IT-systems, interlinking and business models
  - Production planning and -control
- Partners: Arena 2036 e. V., VDI, VDMA Fraunhofer IPA, IG Metall BW, Manufuture BW e.V., Leichtbau BW GmbH








# **ARENA2036 – Stuttgart Research Campus**

Active Research Environment for the Next Generation



# **Future Project Virtual Fort Knox**

## Security and transparency builds trust

Safe, federative platform for service-oriented applications (Apps) for mechanical and plant engineering

### Funded by:
















## Fraunhofer IPA



# Future is our product

Sustainable. Personalized. Smart.

Dr Günter Hörcher Research Strategy

Tel.: +49 711 970-3700 guenter.hoercher@ipa.fraunhofer.de

www.ipa.fraunhofer.de



